Qwen1.5 介绍
GITHUB HUGGING FACE MODELSCOPE DEMO WeChat 简介 最近几个月,我们专注探索如何构建一个真正「卓越」的模型,并在此过程中不断提升开发者的使用体验。农历新年到来之际,我们推出通义千问开源模型1.5版本: Qwen1.5。我们开源了包括0.5B、1.8B、4B、7B、14B、32B、72B和110B共计8个不同规模的Base和Chat模型,, 以及一个MoE模型(点击博客 了解详情),并同步放出了各尺寸模型对应的量化模型。 此次更新中,我们不仅像之前一样提供Int4和Int8的GPTQ模型,还提供了AWQ以及GGUF量化模型。为了提升开发者体验,我们将Qwen1.5的代码正式合并到HuggingFace transformers代码库中,所以现在可以直接使用 transformers>=4.37.0 原生代码,而无需指定 trust_remote_code 选项即可进行开发。 我们已经与vLLM、SGLang(用于部署)、AutoAWQ、AutoGPTQ(用于量化)、Axolotl、LLaMA-Factory(用于微调)以及llama.cpp(用于本地 LLM 推理)等框架合作,所有这些框架现在都支持 Qwen1.5。Qwen1.5 系列可在 Ollama 和 LMStudio 等平台上使用。此外,API 服务不仅在 DashScope 上提供,还在 together.ai 上提供,全球都可访问。请访问here开始使用,我们建议您试用Qwen1.5-72B-chat。 相较于以往版本,本次更新我们着重提升Chat模型与人类偏好的对齐程度,并且显著增强了模型的多语言处理能力。在序列长度方面,所有规模模型均已实现 32768 个 tokens 的上下文长度范围支持。同时,预训练 Base 模型的质量也有关键优化,有望在微调过程中为您带来更佳体验。这次迭代是我们朝向「卓越」模型目标所迈进一个坚实的步伐。 模型效果 为了全面洞悉 Qwen1.5 的效果表现,我们对 Base 和 Chat 模型在一系列基础及扩展能力上进行了详尽评估,包括如语言理解、代码、推理等在内的基础能力,多语言能力,人类偏好对齐能力,智能体能力,检索增强生成能力(RAG)等。 基础能力 关于模型基础能力的评测,我们在 MMLU(5-shot)、C-Eval、Humaneval、GS8K、BBH 等基准数据集上对 Qwen1.5 进行了评估。 Model MMLU C-Eval GSM8K MATH HumanEval MBPP BBH CMMLU GPT-4 86.4 69.9 92.0 45.8 67.0 61.8 86.7 71.0 Llama2-7B 46....