Selected Publications
Qwen Team. (2024). Qwen2 Techinical Report. arXiv.
Qwen Team. (2023). Qwen Technical Report. arXiv.
Bai, J., Bai S., Yang, S., Wang, S., Tan, S., Wang, P., Lin, J., Zhou, C. & Zhou., J. (2023). Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond. arXiv.
Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z., Ma, J., Zhou, C., Zhou, J., & Yang, H. (2022). Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework. ICML.
Bai, J., Men, R., Yang, H., Ren, X., Dang, K.E., Zhang, Y., Zhou, X., Wang, P., Tan, S., Yang, A., Cui, Z., Han, Y., Bai, S., Ge, W., Ma, J., Lin, J., Zhou, J., & Zhou, C. (2022). OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist Models. arXiv, abs/2212.04408.
Lin, J., Men, R., Yang, A., Zhou, C., Zhang, Y., Wang, P., Zhou, J., Tang, J., & Yang, H. (2021). M6: Multi-Modality-to-Multi-Modality Multitask Mega-transformer for Unified Pretraining. KDD.
Yang, A., Pan, J., Lin, J., Men, R., Zhang, Y., Zhou, J., & Zhou, C. (2022). Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese. arXiv, abs/2211.01335.
Ma, J., Bai, S., & Zhou, C. (2022). Pretrained Diffusion Models for Unified Human Motion Synthesis. arXiv, abs/2212.02837.
Yang, H., Lin, J., Yang, A., Wang, P., Zhou, C., & Yang, H. (2022). Prompt Tuning for Generative Multimodal Pretrained Models. arXiv, abs/2208.02532.
Zhou, X., Wang, J., Cui, Z., Zhang, S., Yan, Z., Zhou, J., & Zhou, C. (2022). MMSpeech: Multi-modal Multi-task Encoder-Decoder Pre-training for Speech Recognition. arXiv, abs/2212.00500.
Huang, Y., Lin, J., Zhou, C., Yang, H., & Huang, L. (2022). Modality Competition: What Makes Joint Training of Multi-modal Network Fail in Deep Learning? (Provably). ICML.
Bai, S., Zhou, H., Li, Z., Zhou, C., & Yang, H. (2022). Single Stage Virtual Try-on via Deformable Attention Flows. ECCV.
Cui, Z., Ma, J., Zhou, C., Zhou, J., Yang, H. (2022). M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender Systems. arXiv, abs/2205.08084.
Zhang, Z., Ma, J., Zhou, C., Men, R., Li, Z., Ding, M., Tang, J., Zhou, J., & Yang, H. (2021). UFC-BERT: Unifying Multi-Modal Controls for Conditional Image Synthesis. NeurIPS.
Lin, J., Yang, A., Bai, J., Zhou, C., Jiang, L., Jia, X., Wang, A., Zhang, J., Li, Y., Lin, W., Zhou, J., & Yang, H. (2021). M6-10T: A Sharing-Delinking Paradigm for Efficient Multi-Trillion Parameter Pretraining. arXiv, abs/2110.03888.
Yang, A., Lin, J., Men, R., Zhou, C., Jiang, L., Jia, X., Wang, A., Zhang, J., Wang, J., Li, Y., Zhang, D., Lin, W., Lin, Q., Zhou, J., & Yang, H. (2021). M6-T: Exploring sparse expert models and beyond. arXiv, abs/2105.15082.
Ding, M., Yang, Z., Hong, W., Zheng, W., Zhou, C., Yin, D., Lin, J., Zou, X., Shao, Z., Yang, H., & Tang, J. (2021). CogView: Mastering Text-to-Image Generation via Transformers. NeurIPS.
Ren, S., Lin, J., Zhao, G., Men, R., Yang, A., Zhou, J., Sun, X., & Yang, H. (2021). Learning Relation Alignment for Calibrated Cross-modal Retrieval. ACL-IJCNLP.
Wang, P., Lin, J., Yang, A., Zhou, C., Zhang, Y., Zhou, J., & Yang, H. (2021). Sketch and Refine: Towards Faithful and Informative Table-to-Text Generation. Findings of ACL-IJCNLP.
Lin, J., Yang, A., Zhang, Y., Liu, J., Zhou, J., & Yang, H. (2020). InterBERT: Vision-and-Language Interaction for Multi-modal Pretraining. arXiv, abs/2003.13198.
Zhang, Z., Zhou, C., Ma, J., Lin, Z., Zhou, J., Yang, H., & Zhao, Z. (2021). Learning to Rehearse in Long Sequence Memorization. ICML.
Zhou, C., Ma, J., Zhang, J., Zhou, J., & Yang, H. (2021). Contrastive learning for debiased candidate generation in large-scale recommender systems. KDD.
Ma, J., Zhou, C., Cui, P., Yang, H., & Zhu, W. (2019). Learning Disentangled Representations for Recommendation. NeurIPS.
Chen, Q., Lin, J., Zhang, Y., Ding, M., Cen, Y., Yang, H., & Tang, J. (2019). Towards Knowledge-Based Recommender Dialog System. EMNLP-IJCNLP.
Chen, Q., Lin, J., Zhang, Y., Yang, H., Zhou, J., & Tang, J. (2019). Towards Knowledge-Based Personalized Product Description Generation in E-commerce. KDD.